About the presenter

Philip R Holland has been working with SAS software for
over 30 years, providing SAS technical consultancy and
training through his own company, Holland Numerics Ltd, in
the financial, retail and pharmaceutical sectors in the UK,
Belgium, Holland, Germany and USA since 1992.

He is an enthusiastic software developer, not only using
SAS, but also Perl, Java, JavaScript and Visual Basic. His
fourth book, “SAS Programming and Data Visualization

... Techniques”, was published in 2015.

'/ HOLLAND NUMERICS LIMITED " blog.hollandnumerics.org.uk

SAS' GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

Philip R Holland, Holland Numerics Ltd

Writing Reusable Macros

#SASGF (@)
"sEE R

Introduction

A reusable macro will have the following features:

1) Subsequent macro calls cannot be impacted by a
previous call.

2) All SAS data sets and SAS objects created during a
macro call will be deleted at the end, unless explicitly
kept.

3) Any SAS options changed within a macro are restored to
their previous settings.

Introduction

A reusable macro should not:

4) Create SAS data sets and SAS objects with names that
are likely to be created outside the macro, unless the
user is able to specify them.

5) Create global macro variables, unless specifically written
to do so.

6) Update SAS options, unless specifically written to do so.

Managing SAS Data Sets

Managing SAS Data Sets

* The simplest naming convention to avoid names that have
been used outside of the macro would be to prefix them with
two underscores © dsname”.

 However, if you a writing a suite of reusable macros which
call each other, this may not be adequate.

» To prevent conflicts a safer way would be to prefix all names
with © macroname_dsname”, which will make them more
likely to be unique, but will also make them easier to find and
delete at the end of the macro call without impacting related

Macros.

Managing SAS Data Sets

 The example below uses SAS data sets, but SAS objects, like
formats, informats, templates and macros, should be
controlled in the same way.

Managing SAS Data Sets

$MACRO abcl23 (in=, invar=, out=, outvar=, keep=N);

DATA __ abcl23 new; **unique name (2)**;
SET &in.; **user can set out=**;

&outvar. = UPCASE (&invar.); **user can set outvar=, invar=**;
RUN;
PROC SORT DATA = _ abcl23 new OUT = &out.; **user can set out=**;
BY &outvar.; **user can set outvar=**;
RUN;
$if Supcase ("&keep.") eqg "N" %then %do; **user can set keep=**;

PROC DATASETS LIB = work NOLIST NOWARN;
DELETE __ abcl23_: / MEMTYPE = ALL; **unique name (2)**;

RUN;
QUIT;
%end;
SMEND abcl23;
sabcl23 (in=sashelp.class, invar=name, out=class sort,outvar=name upper)

HOLLAND NUMERICS LIMITED

Conclusions

* Common sense: there are no complicated programming
techniques in this paper, just common sense.

* Think: before writing a new SAS macro think about what it will
create and use, including SAS data sets, macro variables and
options, and make sure that only the ones that the user can
specify can “escape”.

* Remember: writing macros that “play nice” will keep you
popular and your macro users productive.

16

Contact Details

Philip R Holland, SAS Consultant

Holland Numerics Ltd

94 Green Dirift, Royston, Herts SG8 5BT, UK
tel: +44-7714-279085

email: phil@hollandnumerics.org.uk

web: blog.hollandnumerics.org.uk

16

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 16
	Slide 16

